What is the vertex form of #y=4/5x^2-3/8x+3/8#?
1 Answer
Dec 4, 2017
Explanation:
#"the equation of a parabola in "color(blue)"vertex form"# is.
#color(red)(bar(ul(|color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))#
#"where "(h,k)" are the coordinates of the vertex and a"#
#"is a multiplier"#
#"given the equation in standard form "ax^2+bx+c#
#"then the x-coordinate of the vertex is"#
#•color(white)(x)x_(color(red)"vertex")=-b/(2a)#
#y=4/5x^2-3/8x+3/8" is in standard form"#
#"with "a=4/5,b=-3/8 and "c=3/8#
#rArrx_(color(red)"vertex")=-(-3/8)/(8/5)=15/64#
#"substitute this value into the equation for y"#
#y=4/5(15/64)^2-3/8(15/64)+3/8=339/1024#
#rArry=(x-15/64)^2+339/1024larrcolor(red)"in vertex form"#