What is the vertex form of #y=(-x-1)(x+7)#?

1 Answer
Dec 23, 2016

#"Vertex form "->" "y=-1(x color(magenta)(-3))^2color(blue)(+2) #

#"Vertex"->(x,y)=(3,2)#

Explanation:

First return this to the form of #y=ax^2+bx+c#

#y=color(blue)((-x-1))color(brown)((x+7))#

Multiply everything in the right hand bracket by everything in the left.

#y=color(brown)(color(blue)(-x)(x+7)color(blue)(" "-1)(x+7))#

#y=-x^2+7x" "-x-7#

#y=-x^2+6x-7.............................Equation(1)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Write as: #y=-1(x^2-6x)-7+k#
The #k# corrects the error this process introduces.

Move the power from #x^2# to the outside of the btackets

#y=-1(x-6x)^2-7+k#

Halve the 6 from #6x#

#y=-1(x-3x)^2-7+k#

Remove the #x# from the #3x#

#y=-1(x-3)^2-7+k......................Equation(1_a)#
........................................................................................
Dealing with the error
If you were to expand the brackets and multiply by the -1 you have the value of #(-1)(-3)^2 =-9#. Looking back at #Equation(1)# you will observe that this value is not in it. So we have to remove the #-9#

Set #-9+k=0 => k=9#
.....................................................................................
Substitute for #k" in "Equation(1_a)#

#y=-1(x-3)^2-7+k color(green)(" "->" "y=-1(x-3)^2-7+9)#

#y=-1(x color(magenta)(-3))^2color(blue)(+2) #

#x_("vertex")=(-1)xx color(magenta)((-3)) =+3#
#y_("vertex")=color(blue)(+2)#

#"Vertex"->(x,y)=(3,2)#

enter image source here