What is the vertex form of #y= - x^2 - 17x - 15 #?
1 Answer
Feb 11, 2016
#y=-1(x+17/4)^2+57 1/4#
Explanation:
Given -
#y=-x^2-17x-15#
Find the vertex -
#x=(-b)/(2a)=(-(-17))/(2 xx(-1))=17/(-2)=(-17)/2#
#y=-((-17)/2)^2-17((-17)/2)-15#
#y=-(72 1/4)+144 1/2-15#
#y=-72 1/4+144 1/2-15#
#y=57 1/4#
Vertex is
The vertex form of the quadratic equation is -
#y=a(x-h)^2+k#
Where -
#a=-1# Coefficient of#x^2#
#h=-17/4# #x# co-ordinate of the vertex
#k=57 1/4# #y# co-ordinate of the vertex
Now substitute these values in the vertex formula.
#y=-1(x-(-17/4))^2+(57 1/4)#
#y=-1(x+17/4)^2+57 1/4#