What is the vertex form of #y= - x^2 - 17x - 15 #?

1 Answer
Feb 11, 2016

#y=-1(x+17/4)^2+57 1/4#

Explanation:

Given -

#y=-x^2-17x-15#

Find the vertex -

#x=(-b)/(2a)=(-(-17))/(2 xx(-1))=17/(-2)=(-17)/2#

#y=-((-17)/2)^2-17((-17)/2)-15#
#y=-(72 1/4)+144 1/2-15#
#y=-72 1/4+144 1/2-15#
#y=57 1/4#

Vertex is #(-17/2, 57 1/4)#

The vertex form of the quadratic equation is -

#y=a(x-h)^2+k#

Where -

#a=-1# Coefficient of #x^2#
#h=-17/4# #x# co-ordinate of the vertex
#k=57 1/4# #y# co-ordinate of the vertex

Now substitute these values in the vertex formula.

#y=-1(x-(-17/4))^2+(57 1/4)#

#y=-1(x+17/4)^2+57 1/4#

Watch the Video