What is the vertex form of #y=x^2-7x+1#?

1 Answer
Jan 4, 2018

#y=(x-7/2)^2-45/4#

Explanation:

#"the equation of a parabola in "color(blue)"vertex form"# is.

#color(red)(bar(ul(|color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))#

#"where "(h,k)" are the coordinates of the vertex and a"#
#"is a multiplier"#

#"given the equation in standard form ";ax^2+bx+c#

#"then the x-coordinate of the vertex is"#

#•color(white)(x)x_(color(red)"vertex")=-b/(2a)#

#y=x^2-7x+1" is in standard form"#

#"with "a=1,b=-7" and "c=1#

#rArrx_(color(red)"vertex")=-(-7)/2=7/2#

#"substitute this value into the equation for y"#

#y_(color(red)"vertex")=(7/2)^2-7(7/2)+1=-45/4#

#rArry=(x-7/2)^2-45/4larrcolor(red)"in vertex form"#