What is the vertex form of #y=x^2-7x+1#?
1 Answer
Jan 4, 2018
Explanation:
#"the equation of a parabola in "color(blue)"vertex form"# is.
#color(red)(bar(ul(|color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))#
#"where "(h,k)" are the coordinates of the vertex and a"#
#"is a multiplier"#
#"given the equation in standard form ";ax^2+bx+c#
#"then the x-coordinate of the vertex is"#
#•color(white)(x)x_(color(red)"vertex")=-b/(2a)#
#y=x^2-7x+1" is in standard form"#
#"with "a=1,b=-7" and "c=1#
#rArrx_(color(red)"vertex")=-(-7)/2=7/2#
#"substitute this value into the equation for y"#
#y_(color(red)"vertex")=(7/2)^2-7(7/2)+1=-45/4#
#rArry=(x-7/2)^2-45/4larrcolor(red)"in vertex form"#