#y=-12 x^2-4 x-2#. Comparing with standard equation #ax^2+bx+c# we get #a= -12 , b= -4 ,c= -2# #x# co-ordinate of vertex is # -b/(2 a) = -4/(2* -12) = -1/6#
Then, #y# co-ordinate of vertex is #y = -12(-1/6)^2-4(-1/6)-2= -5/3#
The vertex is at #( -1/6 , -5/3)# graph{-12x^2-4x-2 [-20, 20, -10, 10]}