What is the vertex of # y= -3x^2 - 2x - (x+2)^2 #?

2 Answers
May 11, 2017

The vertex is at #(-3/4,-7/4)#

Explanation:

#y=-3x^2-2x-(x+2)^2#

Expand the polynomial:
#y=-3x^2-2x-(x^2+4x+4)#

Combine like terms:
#y=-4x^2-6x-4#

Factor out #-4#:
#y=-4[x^2+3/2x+1]#

Complete the square:
#y=-4[(x+3/4)^2-(3/4)^2+1]#

#y=-4[(x+3/4)^2+7/16]#

#y=-4(x+3/4)^2-7/4#

From vertex form, the vertex is at #(-3/4,-7/4)#

May 11, 2017

Vertex: #(-3/4, -55/16)~~(-0.75, -3.4375)#

Explanation:

1) Rewrite this equation in standard form
#y=-3x^2-2x-(x+2)^2#
#y=-3x^2-2x-(x^2+4x+4)#
#y=-4x^2-6x-4#

2) Rewrite this equation in vertex form by completing the square
#y=(-4x^2-6x)-4#
#y=-4(x^2+3/2x)-4#
#y=-4(x^2+3/2x+(3/4)^2)-4+(3/4)^2#
#y=-4(x+3/4)^2-55/16#

The vertex form is #y=a(x-h)^2+k# reveals the vertex at #(h,k)#

Vertex: #(-3/4, -55/16)~~(-0.75, -3.4375)#

You can see this if you graph the equation
graph{y=-4x^2-6x-4 [-3, 2, -7, 0.1]}