What is the wavelength of an electron traveling at #5.01 times 10^5# #m##/##s#?

1 Answer
Jan 10, 2018

#1.45# nanometres

Explanation:

We can find the wavelength of the electron using De Broglie's formula, that is

#lambda=h/(mv)#

#lambda# is the wavelength in metres

#h# is Planck's constant which is around #6.626*10^-34 J\ s#

#m# is the mass of the object in kilograms

#v# is the velocity of the object in metres/second

Plugging in for #h=6.62*10^-34#, #m=9.11*10^-31# (mass of the electron), and #v=5.01*10^5#, we get

#lambda=(6.62*10^-34)/(9.11*10^-31*5.01*10^5)=1.45*10^-9 m#

#1.45*10^-9 m = 1.45nm#

So, the wavelength of an electron traveling at #5.01*10^5 m"/"s# would be #1.45# nanometres.