What is x if #log (x+4) - log (x+2) = log x#?

1 Answer
Nov 7, 2015

I found: #x=(-1+sqrt(17))/2~~1.5#

Explanation:

We can write it as:
#log((x+4)/(x+2))=logx#
to be equal, the arguments will be equal:
#(x+4)/(x+2)=x#
rearranging:
#x+4=x^2+2x#
#x^2+x-4=0#
solving using the Quadratic Formula:
#x_(1,2)=(-1+-sqrt(1+16))/2=#
two solutions:
#x_1=(-1+sqrt(17))/2~~1.5#
#x_2=(-1-sqrt(17))/2~~-2.5# which will give a negative log.