What's the particular solution that satisfies #y(0)=0# of #dy/dx=(-2x+y)^2-7# ?
1 Answer
# y = (2z+3 -2xe^(6x) + 3e^(6x))/(1-e^(6x))#
Explanation:
We have:
#dy/dx=(-2x+y)^2-7# with#y(0)=0#
We can perform a substitution:
Let
# u=-2x+y \ # and# \ x=0,y=0 => u=0#
If we differentiate wrt
# (du)/dx = -2+dy/dx => dy/dx = (du)/dx +2#
Substituting into the initial DE:
# (du)/(dx) + 2 = u^2-7# with#u(0)=0#
# :. (du)/(dx) = u^2-9#
# :. 1/(u^2-9) (du)/(dx) = 1 #
This has reduced the equation to a First Order Separable ODE, so we can "separate the variable":
# int \ 1/(u^2-9) \ du =int \ u \ du #
To integrate the LHS we can decompose the integrand into partial fractions:
# 1/(u^2-9) -= 1/((u-3)(u+3)) -= A/(u-3) + B/(u+3) #
Using the "cover-up" method we then have:
# 1/((u-3)(u+3)) -= (1/6)/(u-3) + (-1/6)/(u+3) #
So then we have:
# 1/6 int \ 1/(u-3) - 1/(u+3) \ du = int \ dx#
Which we can now readily integrate:
# 1/6 {ln|u-3| - ln |u+3|} = x + C#
Applying the initial condition
# 1/6 {ln|-3| - ln |3|} = C => C = 0#
So we get a Particular Solution:
# ln|u-3| - ln |u+3| = 6x #
# :. ln|(u-3)/(u+3)| = 6x #
# :. |(u-3)/(u+3)| = e^(6x) #
Noting that
# (u-3)/(u+3) = e^(6x) #
# :. u-3 = ue^(6x) +3 e^(6x)#
Restoring the earlier substitution
# -2x+y-3 = (-2x+y)e^(6x) +3e^(6x)#
# :. -2x+y-3 = -2xe^(6x) +ye^(6x) + 3e^(6x)#
# :. y - ye^(6x) = 2z+3 -2xe^(6x) + 3e^(6x)#
# :. y = (2z+3 -2xe^(6x) + 3e^(6x))/(1-e^(6x))#