# Which of the ordered pairs (6, 1), (10, 0), (6, –1), (–22, 8) are solutions for the equation x + 4y = 10?

Jul 11, 2015

S={(6,1);(10,0);(-22,8)}

#### Explanation:

An ordered pair is solution for an equation when your equality is true for this pair.

Let $x + 4 y = 10$ ,



Is $\left(6 , 1\right)$ a solution for $x + 4 y = \textcolor{g r e e n}{10}$ ?

Replace in the equality $\textcolor{red}{x}$ by $\textcolor{red}{6}$ and $\textcolor{b l u e}{y}$ by $\textcolor{b l u e}{1}$

$x + 4 y = \textcolor{red}{6} + 4 \cdot \textcolor{b l u e}{1} \textcolor{g r e e n}{= 10}$

Yes, $\left(6 , 1\right)$ is a solution of $x + 4 y = 10$



Is $\left(6 , - 1\right)$ a solution for $x + 4 y = 10$ ?

Replace in the equality $\textcolor{red}{x}$ by $\textcolor{red}{6}$ and $\textcolor{b l u e}{y}$ by $\textcolor{b l u e}{- 1}$

$x + 4 y = \textcolor{red}{6} + 4 \cdot \textcolor{b l u e}{\left(- 1\right)} = \textcolor{g r e y}{2} \textcolor{red}{\ne} \textcolor{g r e y}{10}$

No, $\left(6 , - 1\right)$ isn't a solution of $x + 4 y = 10$


For training, you can check that $\left(10 , 0\right)$ and $\left(- 22 , 8\right)$ are solutions of $x + 4 y = 10$.