With #abs c gt absa+absb# calculate #lim_(x->oo)1/x int_0^x (dt)/(a sint+ bcost+c)#?
1 Answer
Explanation:
Note that
Hence the limit boils down as:
#lim_(x->oo) 1/x int_0^x dt/(a sin t + b cos t + c) = 1/(2pi) int_-pi^pi dt/(a sin t + b cos t + c)#
Note also that:
#a sin t + b cos t = sqrt(a^2+b^2) cos (t + theta)#
where
which is also periodic with period
#1/(2pi) int_-pi^pi dt/(sqrt(a^2+b^2)cos t+c)#
Next use a Weierstrass substitution, using:
#cos t = (1-tau^2)/(1+tau^2)#
where:
#tau = tan (t/2)#
and:
#dt = 2/(1+tau^2) d tau#
So:
#1/(2pi) int_-pi^pi dt/(sqrt(a^2+b^2)cos t+c)#
#=1/(2pi) int_-oo^oo 1/(sqrt(a^2+b^2)(1-tau^2)/(1+tau^2)+c)*(2d tau)/(1+tau^2)#
#=1/pi int_-oo^oo (d tau)/(sqrt(a^2+b^2)(1-tau^2)+c(1+tau^2))#
#=1/pi int_-oo^oo (d tau)/((c+sqrt(a^2+b^2))+(c-sqrt(a^2+b^2))tau^2)#
#=1/(pi sqrt(c^2-a^2-b^2)) int_-oo^oo ((c-sqrt(a^2+b^2))/sqrt(c^2-a^2+b^2)d tau)/(1+((c-sqrt(a^2+b^2))/sqrt(c^2-a^2-b^2)tau)^2)#
#=1/(pi sqrt(c^2-a^2-b^2)) int_-oo^oo (du)/(1+u^2)" "# with#u = (c-sqrt(a^2+b^2))/sqrt(c^2-a^2-b^2)tau#
#=1/(pi sqrt(c^2-a^2-b^2)) [tan^(-1) u]_-oo^oo#
#=1/(pi sqrt(c^2-a^2-b^2)) (pi/2-(-pi/2))#
#=1/sqrt(c^2-a^2-b^2)#