Observe that, # S : (x-7)^2+(y+24)^2=196,# represents a circle
with Centre at #C( 7,-24)# and Radius #r=sqrt196=14.#
The Parametric Eqns. of #S# are given by,
#x=7+14costheta, y=-24+14sintheta, theta in [0,2pi).#
#:. x^2+y^2=(7+14costheta)^2+(-24+14sintheta)^2,#
#=(7^2+2*7*14costheta+14^2cos^2theta)#
#+(24^2-2*24*14sintheta+14^2sin^2theta),#
#=(7^2+24^2)+2*14(7costheta-24sintheta)+14^2(1),#
#=25^2+14^2+28*25(7/25costheta-24/25sintheta).#
Letting, #7/25=cosalpha," so that, "sinalpha=24/25,# we find,
#x^2+y^2=25^2+14^2+25*28cos(theta+alpha).#
Since, the Minimum Value of #cos" function is, "-1,#
We conclude that the Reqd. Minima is, # 25^2+14^2-25*28#
#=25^2-2*25*14+14^2=(25-14)^2=121.#
Enjoy Maths.!