Answers created by Sudip Sinha
 Back to user's profile

Question #03f69

If 3 times the supplement of an angle is subtracted from 7 times the complement of the angle, the answer is the same as that obtained from trisecting a right angle. What is the supplement of this angle?

A parallelogram has sides A, B, C, and D. Sides A and B have a length of #8 # and sides C and D have a length of # 9 #. If the angle between sides A and C is #pi/4 #, what is the area of the parallelogram?

A circle's center is at #(2 ,7 )# and it passes through #(6 ,4 )#. What is the length of an arc covering #( pi ) /3 # radians on the circle?

A circle's center is at #(3 ,1 )# and it passes through #(5 ,2 )#. What is the length of an arc covering #(7pi ) /12 # radians on the circle?

What is the equation of the line with slope # m= 6 # that passes through # (11,3) #?

A circle's center is at #(7 ,5 )# and it passes through #(5 ,8 )#. What is the length of an arc covering #(5pi ) /3 # radians on the circle?

A circle has a center at #(1 ,2 )# and passes through #(4 ,3 )#. What is the length of an arc covering #pi /4 # radians on the circle?

A circle's center is at #(7 ,5 )# and it passes through #(5 ,4 )#. What is the length of an arc covering #(5pi ) /3 # radians on the circle?

A circle's center is at #(8 ,7 )# and it passes through #(6 ,5 )#. What is the length of an arc covering #(5 pi ) /6 # radians on the circle?

A circle's center is at #(7 ,4 )# and it passes through #(3 ,2 )#. What is the length of an arc covering #( pi ) /6 # radians on the circle?

A circle's center is at #(3 ,9 )# and it passes through #(5 ,8 )#. What is the length of an arc covering #(7pi ) /4 # radians on the circle?

A circle's center is at #(3 ,9 )# and it passes through #(5 ,8 )#. What is the length of an arc covering #(7pi ) /4 # radians on the circle?

A circle's center is at #(5 ,2 )# and it passes through #(2 ,3 )#. What is the length of an arc covering #(7pi ) /8 # radians on the circle?

A circle's center is at #(1 ,5 )# and it passes through #(2 ,3 )#. What is the length of an arc covering #(pi ) /4 # radians on the circle?

A circle's center is at #(3 ,1 )# and it passes through #(5 ,6 )#. What is the length of an arc covering #(7pi ) /12 # radians on the circle?

A circle's center is at #(2 ,6 )# and it passes through #(3 ,1 )#. What is the length of an arc covering #(2pi ) /3 # radians on the circle?

A circle's center is at #(1 ,2 )# and it passes through #(5 ,7 )#. What is the length of an arc covering #(5pi ) /3 # radians on the circle?

A circle has a center at #(7 ,6 )# and passes through #(2 ,1 )#. What is the length of an arc covering #pi/8# radians on the circle?

How do you find the circumference and area of the circle whose equation is #x^2+y^2=36#?

How do you find the general solutions for #6cos^2x  cos x  1 = 0#?

What is the discriminant of #y= 3x^2  4x  3# and what does that mean?

How do you solve #absy=5#?

How do you solve #5r^2  44r + 120 = 30 + 11r# by factoring?

How do you solve #sqrt(2x+20)+2=x#?

What is the solution set for #3x^548x=0#?

How do you factor #2x^2+9x+4#?

Question #497d1

How do you evaluate the function #H(x) = 18 – x#, when x=6?

Question #27939

How do you find the slope and yintercept given # y=3x6#?

How do you find the value for #tan ^ 1 ( 1)#?

How do you solve #abs(k8)=0#?

What is the slope and yintercept of the line x + y + 2 = 0?

How do you divide #(3x^2+7x20) / (x+4)#?

How do you factor completely: #x^2 +4x +4#?

How do you solve #e^(125x) 7 = 123#?

The given angle 307° is in standard position, how do you determine the quadrant in which the angle lies?

How do you find the period of #y= 4 cos 2x#?

How do you solve #abs(3/4x  6) = 9#?

How to plot the graph of #f(x)=cos 8(pi)#?

How do you find the x and yintercept given #y= 4x  7#?

How do you solve the system using the elimination method for 7x + 6y = 4 and 14x  12y = 8?

What is the antiderivative of #xsqrtx#?

How do you simplify #(6y)/(y^2+y72) div y^6/(8y)#?

How do you find the amplitude and period of #f(x) =  8 sin(5*x + pi) #?

How do you differentiate #xy=cot(xy)#?

How do you factor #x^2 + 3x  10#?

How do you simplify #(x^29)/(x^216)*(x^28x+16)/(x^2+6x+9)#?