How do you integrate #int (25+x^2)/sqrt(x^2-4)dx# using trigonometric substitution?

1 Answer
Mar 5, 2018

#int (25+x^2)/sqrt(x^2-4)dx = 27 ln abs (x+sqrt(4-x^2)) + (x+sqrt(4-x^2)) /2 + C#

Explanation:

Substitute #x = 2 sect# #dx =2sect tant dt#, and consider first #x in (2,+oo)# so that #t in (0,pi/2)#

#int (25+x^2)/sqrt(x^2-4)dx = 2int ((25+4sec^2t)sect tant)/(sqrt(4sec^2t-4) dt#

Use now the trigonometric identity:

#sec^2t -1 = 1/cos^2t-1 = (1-cos^2t)/cos^2t =sin^2t/cos^2t = tan^2t#

and note that for #t in (0,pi/2)# the tangent is positive so: #sqrt(sec^2-1) = tant#

and:

#int (25+x^2)/sqrt(x^2-4)dx = 1/2 int ((25+4sec^2t)sect tant)/sqrt(sec^2t-1) dt = int (25+4sec^2t)sect dt#

using the linearity of the integral:

#int (25+x^2)/sqrt(x^2-4)dx = 25 int sect dt +4 int sec^3t dt#

This are fairly known integrals, but we can go through the solution:

#int sect dt = int sect (sect + tant)/(sect+tant)dt#

#int sect dt = int (sec^2 t + sect tant)/(sect+tant)dt#

#int sect dt = int (d(sec t + tant))/(sect+tant)#

#int sect dt = ln abs (sect+tant) + C#

and:

#int sec^3 t dt = int sect sec^2t dt#

#int sec^3 t dt = int sect d(tan t) #

#int sec^3 t dt = sect tant - int sect tan^2 t dt #

#int sec^3 t dt = sect tant - int sect (sec^2 t -1) dt #

#int sec^3 t dt = sect tant - int sec^3tdt +int sectdt #

#2int sec^3 t dt = sect tant + ln abs (sect+tant) + C#

#int sec^3 t dt = (sect tant)/2 +1/2 ln abs (sect+tant) + C#

Putting it together:

#int (25+x^2)/sqrt(x^2-4)dx = 25 ln abs (sect+tant) +2sect tant + 2ln abs (sect+tant) + C#

#int (25+x^2)/sqrt(x^2-4)dx = 27 ln abs (sect+tant) + 2sect tant + C#

and undoing the substitution, considering that:

#sect = x/2#

#tan t = sqrt(1-sec^2t) = sqrt(1-x^2/4)#

#int (25+x^2)/sqrt(x^2-4)dx = 27 ln abs (x/2+sqrt(1-x^2/4)) +2( x/2sqrt(1-x^2/4)) + C#

#int (25+x^2)/sqrt(x^2-4)dx = 27 ln abs (x+sqrt(4-x^2)) + (x+sqrt(4-x^2)) /2 + C#