What is #int_(pi/8)^((11pi)/12) cos^2xsinx-tan^2xcotx dx#?

1 Answer
Feb 28, 2017

#0.60777#

Explanation:

The first step is to separate the integrals.

#int_(pi/8)^((11pi)/12) cos^2xsinxdx - int_(pi/8)^((11pi)/12) tan^2xcotxdx#

#int_(pi/8)^((11pi)/12) cos^2xsinxdx - int_(pi/8)^((11pi)/12) tanx dx#

#int_(pi/8)^((11pi)/12)cos^2xsinxdx - int_(pi/8)^((11pi)/12) sinx/cosx dx#

Let #u = cosx#. Then #du = -sinxdx -> dx= (du)/(-sinx)#. Adjust the bounds of integration accordingly.

#int_(cos(pi/8))^(cos((11pi)/12)) u^2sinx * (du)/(-sinx) - int_(cos(pi/8))^(cos((11pi)/12)) sinx/u * (du)/(-sinx)#

#int_(cos(pi/8))^(cos((11pi)/12)) u^2 du - int_(cos(pi/8))^(cos((11pi)/12)) 1/u du#

These are two trivial integrals.

#[1/3u^3]_(cos(pi/8))^(cos((11pi)/12)) - [ln|u|]_cos(pi/8)^(cos((11pi)/12)) #

#[1/3cos^3x]_(cos(pi/8))^(cos((11pi)/12)) - [ln|cosx|]_cos(pi/8)^(cos((11pi)/12)#

This can be evaluated using the second fundamental theorem of calculus as

#0.60777#

Hopefully this helps!