Prove that
#color(red)(( 1+ cot(\theta )- csc(\theta ) )( 1+tan(\theta )+ sec(\theta ) )= 2#
First, we will list the trigonometric identities we will use:
#color(blue)(sin^2(\theta )+cos^2(\theta)-=1#
#color(blue)(sin(\theta )/cos(\theta)-=tan(\theta)#
#color(blue)(1/sin(\theta )-=csc(\theta)#
#color(blue)(1/cos(\theta )-=sec(\theta)#
#color(blue)(cot(\theta )-=1/tan\theta-=cos(\theta)/sin(\theta)#
We will consider the Left-Hand Side (LHS) first:
#([1+ cot(\theta )- csc(\theta ) )( 1+tan(\theta )+ sec(\theta ) ]#
#rArr (1+ 1/tan(\theta )- 1/sin(\theta ) )( 1+sin(\theta )/cos(\theta )+ 1/cos(\theta))#
#rArr (1/1+ cos(\theta )/sin(\theta )- 1/sin(\theta ) )( 1/1+sin(\theta )/cos(\theta )+ 1/cos(\theta))#
#rArr ((sin(\theta )+ cos(\theta )- 1 )/sin(\theta ) )((cos(\theta )+sin(\theta )+ 1)/cos(\theta))#
#rArr [((sin(\theta )+ cos(\theta )- 1 ) (cos(\theta )+sin(\theta )+ 1)]/(sin(\theta)*cos(\theta)]]#
#rArr (sin(\theta )*cos(\theta )+ sin^2(\theta )+cancel sin (\theta ))/(sin(\theta)*cos(\theta)]#+
#(cos^2(\theta )+sin(\theta)*cos(\theta )+cancel cos(\theta ))/(sin(\theta)*cos(\theta)]#+
#(-cancel cos(\theta )-cancel sin(\theta )- 1)/(sin(\theta)*cos(\theta)]#
#rArr (sin^2(\theta )+cos^2(\theta )+sin(\theta)*cos(\theta)+sin(\theta)*cos(\theta)-1)/(sin(\theta)*cos(\theta)#
#rArr (cancel 1+2*sin(\theta)*cos(\theta)- cancel 1)/(sin(\theta)*cos(\theta)#
#rArr (2*sin(\theta)*cos(\theta))/(sin(\theta)*cos(\theta)#
#rArr 2*cancel(sin(\theta)*cos(\theta))/cancel(sin(\theta)*cos(\theta)#
#rArr 2#
= Right-Hand Side (RHS)
Hence,
#color(blue)(( 1+ cot(\theta )- csc(\theta ) )( 1+tan(\theta )+ sec(\theta ) )= 2#