#(1+sinx -cosx) /(1+cosx +sinx )=tan(x/2) # prove the identities?help

2 Answers
Jun 25, 2018

#LHS=(1+sinx -cosx )/(1+cosx +sinx ) #

#=(sinx(1+sinx -cosx ))/(sinx(1+cosx) +sin^2x ) #

#=(sinx(1+sinx -cosx ))/(sinx(1+cosx) +(1-cos^2x) )#

#=(sinx(1+sinx -cosx ))/((1+cosx)(sinx +1-cosx) )#

#=sinx/(1+cosx)#

#=(2sin(x/2)cos(x/2))/(2 cos^2(x/2))#

#=sin(x/2)/cos(x/2)#

#=tan(x/2)#

Jun 25, 2018

See a Proof in Explanation.

Explanation:

We have, #(color(red)(1)+color(blue)(sinx))/color(brown)cosx#,

#={color(red)(cos^2(x/2)+sin^2(x/2))+color(blue)(2cos(x/2)sin(x/2))}/{color(brown)(cos^2(x/2)-sin^2(x/2))}#,

#={cos(x/2)+sin(x/2)}^cancel(2)/[cancel({cos(x/2)+sin(x/2)}){cos(x/2)-sin(x/2)}]#.

# rArr (1+sinx)/cosx={cos(x/2)+sin(x/2)}/{cos(x/2)-sin(x/2)}.#

By dividendo-componendo

#{(1+sinx)-cosx}/{(1+sinx)+cosx}#,

#=[{cos(x/2)+sin(x/2)}-{cos(x/2)-sin(x/2)}]/[{cos(x/2)+sin(x/2)}+{cos(x/2)-sin(x/2)}]#,

#=sin(x/2)/(cos(x/2))#

#=tan(x/2),# as Respected dk_ch has readily obtained!

Enjoy Maths.!