#2x^3+4x^2-13x+6# Can you factorise this please?

2 Answers
Apr 22, 2018

#"There exists no easy factorization here. Only a general method"#
#"for solving a cubic equation can help us here."#

Explanation:

#"We could apply a method based on the substitution of Vieta."#
#"Dividing by the first coefficient yields :"#
#x^3 + 2 x^2 - (13/2) x + 3 = 0#
#"Substituting "x=y+p" in "x^3+ax^2+bx+c" yields :"#
#y^3 + (3p+a) y^2 + (3p^2+2ap+b) y + p^3+ap^2+bp+c = 0#
#"if we take "3p+a=0" or "p=-a/3", the first coefficient"# #"becomes zero, and we get :"#
#=> y^3 - (47/6) y + (214/27) = 0#
#"(with "p = -2/3")"#
#"Substituting "y=qz" in "y^3 + b y + c = 0", yields :"#
#z^3 + b z / q^2 + c / q^3 = 0#
#"if we take "q = sqrt(|b|/3)", the coefficient of z becomes"#
#"3 or -3, and we get :"#
#"(here "q = 1.61589329")"#
#=> z^3 - 3 z + 1.87850338 = 0#
#"Substituting "z = t + 1/t", yields :"#
#=> t^3 + 1/t^3 + 1.87850338 = 0#
#"Substituting "u = t^3", yields the quadratic equation :"#
#=> u^2 + 1.87850338 u + 1 = 0#
#"The roots of the quadratic equation are complex."#
#"This means that we have 3 real roots in our cubic equation."#
#"A root of this quadratic equation is "#
#u=-0.93925169 + 0.34322917 i#

#"Substituting the variables back, yields :"#
#t = root3(u) = 1.0*(cos(-0.93041329)+i sin(-0.93041329))#
#= 0.59750263 - 0.80186695 i.#
#=> z = 1.19500526 + i 0.0.#
#=> y = 1.93100097 + i 0.0.#
#=> x = 1.26433430#
#"The other roots can be found by dividing and solving the"# #"remaining quadratic equation."#
#"The other roots are real : -3.87643981 and 0.61210551."#

Apr 22, 2018

#2x^3+4x^2-13x+6 = 2(x-x_0)(x-x_1)(x-x_2)#

where:
#x_n = 1/6(-4+2sqrt(94) cos(1/3 cos^(-1)(-214/2209 sqrt(94))+(2npi)/3))#

Explanation:

Given:

#2x^3+4x^2-13x+6#

Note that this does factorise much more easily if there is a typo in the question.

For example:

#2x^3+4x^2-color(red)(12)x+6 = 2(x-1)(x^2+3x-6) = ...#

#2x^3+4x^2-13x+color(red)(7) = (x-1)(2x^2+6x-7) = ...#

If the cubic is correct in the given form, then we can find its zeros and factors as follows:

#f(x) = 2x^3+4x^2-13x+6#

Discriminant

The discriminant #Delta# of a cubic polynomial in the form #ax^3+bx^2+cx+d# is given by the formula:

#Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd#

In our example, #a=2#, #b=4#, #c=-13# and #d=6#, so we find:

#Delta = 2704+17576-1536-3888-11232 = 3624#

Since #Delta > 0# this cubic has #3# Real zeros.

Tschirnhaus transformation

To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.

#0=108f(x)=216x^3+432x^2-1404x+648#

#=(6x+4)^3-282(6x+4)+1712#

#=t^3-282t+1712#

where #t=(6x+4)#

Trigonometric substitution

Since #f(x)# has #3# real zeros, Cardano's method and similar will result in expressions involving irreducible cube roots of complex numbers. My preference in such circumstances is to use a trigonometric substitution instead.

Put:

#t = k cos theta#

where #k = sqrt(4/3 * 282) = 2sqrt(94)#

Then:

#0 = t^3-282t+1712#

#color(white)(0) = k^3 cos^3 theta - 282k cos theta+1712#

#color(white)(0) = 94k(4 cos^3 theta - 3 cos theta)+1712#

#color(white)(0) = 94k cos 3 theta+1712#

So:

#cos 3 theta = -1712/(94 k) = -1712/(188 sqrt(94)) = -(1712sqrt(94))/(188*94) = -214/2209 sqrt(94)#

So:

#3 theta = +-cos^(-1)(-214/2209 sqrt(94))+2npi#

So:

#theta = +- 1/3cos^(-1)(-214/2209 sqrt(94))+(2npi)/3#

So:

#cos theta = cos(1/3 cos^(-1)(-214/2209 sqrt(94))+(2npi)/3)#

Which givens #3# distinct zeros of the cubic in #t#:

#t_n = k cos theta = 2sqrt(94) cos(1/3 cos^(-1)(-214/2209 sqrt(94))+(2npi)/3)" "# for #n = 0, 1, 2#

Then:

#x = 1/6(t-4)#

So the three zeros of the given cubic are:

#x_n = 1/6(-4+2sqrt(94) cos(1/3 cos^(-1)(-214/2209 sqrt(94))+(2npi)/3))#

with approximate values:

#x_0 ~~ 1.2643#

#x_1 ~~ -3.8764#

#x_2 ~~ 0.61211#