#y=3x^2-12x+7# into vertex form?

2 Answers
Mar 12, 2018

#y = 3(x-2)^2-5#

Explanation:

When given the form:

#y = ax^2+bx+c#

The vertex form is:

#y = a(x-h)^2+k#

where #h = -b/(2a)# and #k = a(h)^2+b(h)+c#

Given: #y=3x^2-12x+7#

We observe that #a = 3# and substitute that value into the vertex form:

#y = 3(x-h)^2+k" [1]"#

Compute h:

#h = 12/(2(3))#

#h = 2#

Substitute into equation [1]:

#y = 3(x-2)^2+k" [1.1]"#

Compute k:

#k = 3(2)^2-12(2)+7#

#k =-5#

Substitute into equation [1.1]

#y = 3(x-2)^2-5#

Mar 12, 2018

#y=3(x-2)^2-5#

Explanation:

Vertex Form is #y=a(x-k)^2+h #
Expanding the above form:
#y=a(x^2-2kx+k^2)+h#
#y=ax^2-2akx+ak^2+h#
Comparing this form with the form given in the problem,
#y=3x^2-12x+7#
#y=(a)x^2-(2ak)x+(ak^2+h)#

We can see that
#a=3#
#-2ak=-12#
#ak^2+h=7#
From here we can solve for k and h.
#-2(3)k=-12#
#-6k=-12#
#k=2#
#3*2^2+h=7#
#12+h=7#
#h=-5#