#3x^2-8x+15#? (factoring trinomials without quadratic formula)

1 Answer
Mar 2, 2018

#3x^2-8x+15 = 3(x-4/3-sqrt(29)/3i)(x-4/3+sqrt(29)/3i)#

Explanation:

Given:

#3x^2-8x+15#

Note that this is in standard form:

#ax^2+bx+c#

with #a=3#, #b=-8# and #c=15#

This has discriminant #Delta# given by the formula:

#Delta = b^2-4ac = (color(blue)(-8))^2-4(color(blue)(3))(color(blue)(15)) = 64-180 = -116#

Since #Delta < 0# this quadatic has no real zeros and no linear factors with real coefficients.

We can factor it with complex coefficients by completing the square:

#3(3x^2-8x+15) = 9x^2-24x+45#

#color(white)(3(3x^2-8x+15)) = (3x)^2-2(3x)(4)+4^2+29#

#color(white)(3(3x^2-8x+15)) = (3x-4)^2+(sqrt(29))^2#

#color(white)(3(3x^2-8x+15)) = (3x-4)^2-(sqrt(29)i)^2#

#color(white)(3(3x^2-8x+15)) = ((3x-4)-sqrt(29)i)((3x-4)+sqrt(29)i)#

#color(white)(3(3x^2-8x+15)) = (3x-4-sqrt(29)i)(3x-4+sqrt(29)i)#

So:

#3x^2-8x+15 = 1/3(3x-4-sqrt(29)i)(3x-4+sqrt(29)i)#

#color(white)(3x^2-8x+15) = 3(x-4/3-sqrt(29)/3i)(x-4/3+sqrt(29)/3i)#