#3x^2-8x+15#? (factoring trinomials without quadratic formula)
1 Answer
Explanation:
Given:
#3x^2-8x+15#
Note that this is in standard form:
#ax^2+bx+c#
with
This has discriminant
#Delta = b^2-4ac = (color(blue)(-8))^2-4(color(blue)(3))(color(blue)(15)) = 64-180 = -116#
Since
We can factor it with complex coefficients by completing the square:
#3(3x^2-8x+15) = 9x^2-24x+45#
#color(white)(3(3x^2-8x+15)) = (3x)^2-2(3x)(4)+4^2+29#
#color(white)(3(3x^2-8x+15)) = (3x-4)^2+(sqrt(29))^2#
#color(white)(3(3x^2-8x+15)) = (3x-4)^2-(sqrt(29)i)^2#
#color(white)(3(3x^2-8x+15)) = ((3x-4)-sqrt(29)i)((3x-4)+sqrt(29)i)#
#color(white)(3(3x^2-8x+15)) = (3x-4-sqrt(29)i)(3x-4+sqrt(29)i)#
So:
#3x^2-8x+15 = 1/3(3x-4-sqrt(29)i)(3x-4+sqrt(29)i)#
#color(white)(3x^2-8x+15) = 3(x-4/3-sqrt(29)/3i)(x-4/3+sqrt(29)/3i)#