Question #5eeee
1 Answer
Oct 13, 2014
#y'=5*cos2x # Method : I
Explanation :
# y = 5sin(x)cos(x)# From trigonometric identities,
#sin2A=2sinAcosA#
#y=5/2*2sin(x)cos(x)#
#y=5/2*sin2x# Now differentiating with respect to
#x# ,
#y'=5/2*(cos2x)*2#
# **y'=5*cos2x** # Method : II
Using Product Rule, which is
#y=f(x)*g(x)# , then
#y'=f'(x)*g(x)+f(x)*g'(x)# Similarly following for the given problem, yields
#y'=5*(cosx(cosx)+sinx(-sinx))#
#y'=5*(cos^2x-sin^2x)#
# **y'=5*cos2x** #