Question #7dffd

1 Answer
Nov 2, 2014

Let us turn the left-hand side into the right-hand side of the equation.

#tan^2x-cot^2x#

by #tanx={sinx}/{cosx}# and #cotx={cosx}/{sinx}#,

#={sin^2x}/{cos^2x}-{cos^2x}/{sin^2x}#

by finding the common denominator,

#={sin^4x-cos^4x}/{cos^2x sin^2x}#

by factoring out the numerator,

#={(sin^2x-cos^2x)(sin^2x+cos^2x)}/{cos^2x sin^2x}#

by #sin^2x+cos^2x=1#,

#={sin^2x-cos^2x}/{cos^2x sin^2x#

by splitting into two fractions,

#={sin^2x}/{sin^2x cos^2x}-{cos^2x}/{sin^2x cos^2x}#

by cancelling out common factors,

#=1/{cos^2x}-1/{sin^2x}#

by #secx=1/cosx# and #cscx=1/sinx#,

#=sec^2x-csc^2x#

Hence,

#tan^2x-cot^2x=sec^2x-csc^2x#.


I hope that this was helpful.