The answer is: #(x-8/5)^2/(144/25)+y^2/(144/45)=1#.
Remembering that:
#x=rcostheta#
#y=rsintheta#
we can say: #x^2+y^2=r^2#.
Our function becomes:
#r=4/(3-2costheta)rArrr(3-2costheta)=4rArr#
#3r-2rcostheta=4rArr3sqrt(x^2+y^2)-2x=4rArr#
#3sqrt(x^2+y^2)=2x+4rArr# (with #x>=-2#)
#9x^2+9y^2=4x^2+16x+16rArr#
#5x^2-16x+9y^2=16rArr#
#5(x^2-16/5x)+9y^2=16rArr#
#5(x^2-16/5x+64/25-64/25)+9y^2=16rArr#
#5(x^2-16/5x+64/25)-64/5+9y^2=16rArr#
#5(x-8/5)^2+9y^2=16+64/5rArr#
#5(x-8/5)^2+9y^2=144/5rArr#
#(x-8/5)^2/(144/5*1/5)+y^2/(144/5*1/9)=1rArr#
#(x-8/5)^2/(144/25)+y^2/(144/45)=1#
That is an ellipse with center in #C(8/5,0)# and semi-axis #a=12/5# and #b=12/sqrt45=12/(3sqrt5)=4sqrt5/5#.