Question #27455

1 Answer
Feb 19, 2015

The answer is: #(x-8/5)^2/(144/25)+y^2/(144/45)=1#.

Remembering that:

#x=rcostheta#
#y=rsintheta#

we can say: #x^2+y^2=r^2#.

Our function becomes:

#r=4/(3-2costheta)rArrr(3-2costheta)=4rArr#

#3r-2rcostheta=4rArr3sqrt(x^2+y^2)-2x=4rArr#

#3sqrt(x^2+y^2)=2x+4rArr# (with #x>=-2#)

#9x^2+9y^2=4x^2+16x+16rArr#

#5x^2-16x+9y^2=16rArr#

#5(x^2-16/5x)+9y^2=16rArr#

#5(x^2-16/5x+64/25-64/25)+9y^2=16rArr#

#5(x^2-16/5x+64/25)-64/5+9y^2=16rArr#

#5(x-8/5)^2+9y^2=16+64/5rArr#

#5(x-8/5)^2+9y^2=144/5rArr#

#(x-8/5)^2/(144/5*1/5)+y^2/(144/5*1/9)=1rArr#

#(x-8/5)^2/(144/25)+y^2/(144/45)=1#

That is an ellipse with center in #C(8/5,0)# and semi-axis #a=12/5# and #b=12/sqrt45=12/(3sqrt5)=4sqrt5/5#.