Question #24b6e

2 Answers
Apr 27, 2015

Use the Law of Cosines:

Let #vec(s)=5vec(x)+2vec(y)#

#abs(vec(s))^2 = abs(5vec(x))^2+abs(2vec(y))^2-2abs(5vec(x))abs(2vec(y))cos(120^@)#

(Draw the parallelogram for the addition, The large interior angle opposite #vec(s)# is #120^@#.)

So
#abs(vec(s))^2 = 5^2+2^2-2(5)(2)(-1/2) = 39#

#abs(vec(s)) = sqrt 39#

The general formula is:

For vectors #vec(a)# and #vec(b)# and the angle between them #theta#

#abs(vec(a)+vec(b))^2 = abs(vec(a))^2+abs(vec(b))^2 + 2abs(vec(a))abs(2vec(b))cos theta#

(The angle opposite the sum is #180^@ - theta#, so its cosine is #-cos theta#)

Apr 28, 2015

It's also an interesting exercise to do this with algebraic properties of dot products and their relationship to vector lengths (in particular, #||vec(v)||^{2}=vec(v)\cdot vec(v)#)

Here's the calculation:

#||5vec(x)+2vec(y)||^{2}=(5vec(x)+2vec(y))\cdot (5vec(x)+2vec(y))#

#=25vec(x)\cdot vec(x)+20vec(x)\cdot vec(y)+4vec(y)\cdot vec(y)#

#=25||vec(x)||^{2}+20||vec(x)|| ||vec(y)|| cos(theta)+4||vec(y)||^{2}#

#=25\cdot 1^{2}+20\cdot 1\cdot 1\cdot cos(60^{\circ})+4\cdot 1^{2}#

#=25+10+4=39#.

Therefore, #||5vec(x)+2vec(y)||=\sqrt{39}#.

What this really illustrates is that the Law of Cosines and the geometric interpretation of dot products are equivalent.