How do you use the binomial theorem to approximate 1.08^(1/2)1.0812 and hence find sqrt(3)3 to 44 significant figures?

1 Answer
Jul 11, 2015

Cutting the binomial series short,

(1+x)^(1/2) ~= 1+x/2-x^2/8(1+x)121+x2x28

Then sqrt(3) = 5/3sqrt(1.08) ~= 1+0.08/2-(0.08^2)/8 = 1.7323=531.081+0.0820.0828=1.732

Explanation:

(1+x)^(1/2) = 1+(1/2)x+(1/(2!))(1/2)(1/2-1)x^2+(1/(3!))(1/2)(1/2-1)(1/2-2)x^3+...

=1+x/2-x^2/8+x^3/16-...

If x is small this will converge rapidly

So with x = 0.08 we get:

sqrt(1.08) = (1+0.08)^(1/2) ~= 1 + 0.08/2 - (0.08^2)/8

=1+0.04-0.0008 = 1.0392

Now 1.08 = 3^3/(5^2)

So sqrt(1.08) = sqrt(3^3/(5^2)) = sqrt(3*(3/5)^2) = 3/5sqrt(3)

So sqrt(3) = 5/3sqrt(1.08) ~= 5/3*1.0392 = 1.732