Question #f0d61

1 Answer
Sep 25, 2015

The Poisson distribution is discrete with probability:

#p(x) = (e^(-lambda))(lambda^x)/(x!)#

Explanation:

First, simplify the conditional probability:

P(X = 1 | X <= 1) = P(X=1) / [P(X=0) + P(X=1)]

Now, insert the Poisson probability for each expression above:

P(X=1) / [P(X=0) + P(X=1)] =

#[(e^(-lambda))(lambda^1)/(1!)} / [(e^(-lambda))(lambda^0)/(0!) + (e^(-lambda))(lambda^1)/(1!)#

Next, simplify:

#[(e^(-lambda))(lambda)} / [(e^(-lambda)) + (e^(-lambda))(lambda)] = lamda / (1+lamda)#

Finally, set equal to 0.8 and solve for #lambda#:

#lamda / (1+lamda)# = #0.8#

#lambda# = #4#

Hope that helped