Question #7a7ca

1 Answer
Jan 12, 2016

assuming it's #int 1/(sinx+cosx) dx#

#sinx+cosx = sinx+sin(x+pi/2)#

You remember this unknown formula ? :

#sin(q)+sin(p) = 2sin((q+p)/2)cos((q-p)/2)#

In this case we have :

#sinx+sin(x+pi/2) = 2sin(x+pi/4)cos(pi/4) = sqrt(2)sin(x+pi/4)#

#int 1/(sinx+cosx) dx = 1/sqrt(2)int1/sin(x+pi/4)dx#

#t = x+pi/4#
#dt = dx#

#1/sqrt(2)int1/sin(t)dt#

#-1/sqrt(2)int-sin(t)/sin^2(t)dt#

#u = cos(t)#
#du = -sin(t)dt#

With pythagore #sin^2t = 1-cos^2t#

#-1/sqrt(2)int1/(1-u^2)dt#

Which is the derivate of #-1/sqrt2arctanh(u)#

#[-1/sqrt2arctanh(u)]#

Substitute back

#[-1/sqrt2arctanh(cos(t))]#

#[-1/sqrt2arctanh(cos(x+pi/4))]#