Question #5e9cc

2 Answers
Jul 6, 2016

The limiting size of cube is the space diagonal from a lower vertex to an upper vertex. We find this using Pythagoras' theorem.

First, the face diagonal is found

#fd = sqrt(a^2+a^2) = sqrt(2)a# where a is the side length of the cube.

Then the space diagonal is

#sd = sqrt((fd)^2+a^2) = sqrt((sqrt(2)a)^2+a^2) = sqrt(3)a#

The biggest cube that can therefore be cut from the sphere will have a space diagonal of 5 inches, so

#5 = sqrt(3)a implies a = 5/(sqrt(3)) # inches

Volume of cube = #a^3 = (5/(sqrt(3)))^3 = ((125)/(3sqrt(3))) = 24.056 "in"^3#

Jul 6, 2016

#V = 8 r^3/(3 sqrt(3)) = 24.0563#

Explanation:

Maximum #V = 8xyz#

subjected to

#x^2+y^2+z^2- r^2 = 0#

Using Lagrangian multipliers

#L(x,y,z,lambda)= 8 xyz+lambda (x^2+y^2+z^2-r^2)#

Stationarity condition

#grad L(x,y,z,lambda) = vec 0#

# { (2 lambda x + 8y z = 0), (2 lambda y + 8x z = 0), (2 lambda z + 8x y=0), (x^2 + y^2 + z^2 -r^2= 0) :}#

Solving for #x,y,z,lambda#

#x = r/sqrt[3], y = r/sqrt[3], z = r/sqrt[3], lambda =- (4r)/(2 sqrt[3])#

so #V = 8 r^3/(3 sqrt(3)) =24.0563#