If #a, b, c, d# are in harmonic progress then which of the following is equal to #ab+bc+cd# ?
A. #3ad#
B. #3bc#
C. #3bd#
D. #3ac#
A.
B.
C.
D.
1 Answer
Apr 30, 2016
A.
Explanation:
If
#{(a = 1/A), (b = 1/(A+D)), (c = 1/(A+2D)), (d = 1/(A+3D)) :}#
for some constants
Then we find:
#ab+bc+cd#
#=1/(A(A+D))+1/((A+D)(A+2D))+1/((A+2D)(A+3D))#
#=((A+2D)(A+3D)+A(A+3D)+A(A+D))/(A(A+D)(A+2D)(A+3D))#
#=(3A^2+9AD+6D^2)/(A(A+D)(A+2D)(A+3D))#
#=(3(A^2+3AD+2D^2))/(A(A+D)(A+2D)(A+3D))#
#=(3color(red)(cancel(color(black)((A+D))))color(red)(cancel(color(black)((A+2D)))))/(Acolor(red)(cancel(color(black)((A+D))))color(red)(cancel(color(black)((A+2D))))(A+3D))#
#=3/(A(A+3D))#
#=3*1/A*1/(A+3D)#
#=3ad#