How do you use the binomial theorem to expand and simplify #(2+x)^5-(2-x)^5# and apply the result to calculate #2.1^5-1.9^5# ?
1 Answer
#(2+x)^5-(2-x)^5=160x+80x^3+2x^5#
#2.1^5-1.9^5=16.08002#
Explanation:
Use Pascal's triangle to help expand the
Choose the row
#(a+b)^5 = a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5#
Hence:
#(2+x)^5#
#= 2^5+5(2^4)x+10(2^3)x^2+10(2^2)x^3+5(2)x^4+x^5#
#=32+80x+80x^2+40x^3+10x^4+x^5#
Similarly:
#(2-x)^5=32-80x+80x^2-40x^3+10x^4-x^5#
Hence:
#(2+x)^5-(2-x)^5#
#=(color(red)(cancel(color(black)(32)))+80x+color(red)(cancel(color(black)(80x^2)))+40x^3+color(red)(cancel(color(black)(10x^4)))+x^5)-(color(red)(cancel(color(black)(32)))-80x+color(red)(cancel(color(black)(80x^2)))-40x^3+color(red)(cancel(color(black)(10x^4)))-x^5)#
#=160x+80x^3+2x^5#
Use this with
#2.1^5-1.9^5#
#=(2+0.1)^5-(2-0.1)^5#
#=160(0.1)+80(0.1)^3+2(0.1)^5#
#=160(0.1)+80(0.001)+2(0.00001)#
#=16+0.08+0.00002#
#=16.08002#