What is #y=2(x+3)^2+1# in standard form?

1 Answer
Mar 1, 2016

#y=2(x+3)^2+1# in standard form is #color(purple)(y=2x^2+12x+19)#.

Explanation:

#y=2(x+3)^2+1# is a quadratic equation in vertex form. It can be converted into standard form by doing the following:

Remove the parentheses and exponent by simplifying #(x+3)^2#, which is a sum of squares.

#a^2+b^2=a^2+2ab+b^2#, where #a=x, and b=3#.

#color(blue)((x+3)^2=x^2+2*x*3+3^2)#

Simplify.

#color(blue)((x^2+6x+9)#

Rewrite the equation, substituting #color(blue)((x^2+6x+9))# for #(x+3)^2#.

#y=2color(blue)((x^2+6x+9))+1#

Distribute the #color(red)2#.

#y=color(red)2*x^2+6x*color(red)2+9*color(red)2+1#

Simplify.

#y=color(purple)(2x^2+12x+18)+1#

Simplify.

#color(purple)(y=2x^2+12x+19)#