Question #c0aff

1 Answer
Mar 8, 2016

#sum_(n=0)^oo(2^nsin^n(x))/n^2# converges if and only if

#x in [kpi-pi/6, kpi+pi/6]# for some #k in ZZ#

Explanation:

First, note that #(2^nsin^n(x))/n^2 = (2sin(x))^n/n^2#.


If #|2sin(x)| <= 1# then #|(2sin(x))^n/n^2| <= 1/n^2#.

As #sum_(n=0)^oo1/n^2# is a known convergent series, this implies #sum_(n=0)^oo(2sin(x))^n/n^2# converges by the comparison test.


If #|2sin(x)| > 1# then #lim_(n->oo)|(2sin(x))^n/n^2|# diverges (this can be demonstrated through two applications of L'Hopital's rule ) and thus #sum_(n=0)^oo(2sin(x))^n/n^2# diverges by the divergence test.


By the above, we can say that #sum_(n=0)^oo(2^nsin^n(x))/n^2# converges if and only if #|2sin(x)|<= 1#, that is, when #|sin(x)| <= 1/2#.

Solving for #x# gives us our final result:

#sum_(n=0)^oo(2^nsin^n(x))/n^2# converges if and only if

#x in [kpi-pi/6, kpi+pi/6]# for some #k in ZZ#