Question #0b243 Calculus Introduction to Integration Definite and indefinite integrals 1 Answer Ratnaker Mehta Nov 15, 2017 # 1/4ln2.# Explanation: Let, #I=int_0^(pi/12) tan4xdx.# By the Fundamental Theorem of Calculus, we know that, #intf(x)dx=F(x)+C rArr int_a^bf(x)dx=[F(x)]_a^b=F(b)-F(a)#. Now, #inttan4xdx=1/4ln|sec4x|+C.# #:. int_0^(pi/12)tan4xdx=[1/4ln|sec4x|]_0^(pi/12),# #=1/4[ln|sec(4*pi/12)|-ln|sec0|],# #=1/4[ln|sec(pi/3)|-ln|1|],# #=1/4[ln|2|-0],# # rArr int_0^(pi/12)tan4xdx=1/4ln2.# Answer link Related questions What is the difference between definite and indefinite integrals? What is the integral of #ln(7x)#? Is f(x)=x^3 the only possible antiderivative of f(x)=3x^2? If not, why not? How do you find the integral of #x^2-6x+5# from the interval [0,3]? What is a double integral? What is an iterated integral? How do you evaluate the integral #1/(sqrt(49-x^2))# from 0 to #7sqrt(3/2)#? How do you integrate #f(x)=intsin(e^t)dt# between 4 to #x^2#? How do you determine the indefinite integrals? How do you integrate #x^2sqrt(x^(4)+5)#? See all questions in Definite and indefinite integrals Impact of this question 1223 views around the world You can reuse this answer Creative Commons License