What is the eighth term given the sequence: +896, -448, +224,-112,....... ?

1 Answer
Sep 12, 2016

the eighth term is " "-7 7

Explanation:

Let any position count be ii
Let any term be a_iai

So
a_1->" first term"a1 first term
a_2->" second term"a2 second term
a_i->" "ith" term"ai ith term

Two things I notice:
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Point 1:")->Point 1:Alternates between positive and negative starting at positive.

So this can be achieved by

a_i->a_1 xx(-1)^2aia1×(1)2

a_i->a_2xx(-1)^3aia2×(1)3

a_i->a_3xx(-1)^4aia3×(1)4

=>a_i->a_ixx(-1)^(i+1)aiai×(1)i+1

,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

color(blue)("Point 2:")->Point 2:Each term is half the previous

So we have

(-1)^2xxa_1(1)2×a1
a_2=(-1)^3xx1/2xxa_1a2=(1)3×12×a1
a_3=(-1)^4xx1/2xx1/2xxa_1a3=(1)4×12×12×a1

This implies a_i=(-1)^(i+1)xx(1/2)^(i-1)xxa_1ai=(1)i+1×(12)i1×a1

Where a_1=+896a1=+896
,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

color(blue)(a_i=896(-1)^(i+1)(1/2)^(i-1)ai=896(1)i+1(12)i1

Thus

" "color(purple)(bar(ul(|color(white)(2/2)a_8=896(-1)^(8+1)(1/2)^(8-1) = -7color(white)(2/2)|)))