Let any position count be ii
Let any term be a_iai
So
a_1->" first term"a1→ first term
a_2->" second term"a2→ second term
a_i->" "ith" term"ai→ ith term
Two things I notice:
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Point 1:")->Point 1:→Alternates between positive and negative starting at positive.
So this can be achieved by
a_i->a_1 xx(-1)^2ai→a1×(−1)2
a_i->a_2xx(-1)^3ai→a2×(−1)3
a_i->a_3xx(-1)^4ai→a3×(−1)4
=>a_i->a_ixx(-1)^(i+1)⇒ai→ai×(−1)i+1
,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Point 2:")->Point 2:→Each term is half the previous
So we have
(-1)^2xxa_1(−1)2×a1
a_2=(-1)^3xx1/2xxa_1a2=(−1)3×12×a1
a_3=(-1)^4xx1/2xx1/2xxa_1a3=(−1)4×12×12×a1
This implies a_i=(-1)^(i+1)xx(1/2)^(i-1)xxa_1ai=(−1)i+1×(12)i−1×a1
Where a_1=+896a1=+896
,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)(a_i=896(-1)^(i+1)(1/2)^(i-1)ai=896(−1)i+1(12)i−1
Thus
" "color(purple)(bar(ul(|color(white)(2/2)a_8=896(-1)^(8+1)(1/2)^(8-1) = -7color(white)(2/2)|)))