Question #a8dd2
1 Answer
Nov 8, 2016
Explanation:
#I=intx^3e^(2x^2)dx#
Before using integration by parts (IBP), we can make a simpler substitution. Let
Modifying the integral:
#I=1/4intx^2e^(2x^2)(4xdx)=1/4int1/2te^tdt=1/8intte^tdt#
Now we should apply IBP. This integration technique takes the form
#{(u=t,=>,du=dt),(dv=e^tdt,=>,v=e^t):}#
Recall to differentiate
Thus:
#I=1/8(te^t-inte^tdt)=1/8(te^t-e^t)=1/8e^t(t-1)#
Since
#I=1/8e^(2x^2)(2x^2-1)+C#