Question #d2701

1 Answer
Aug 20, 2016

#color(red)((x-4)^2/3^2+(y+1)^2/2^2=1)#

Explanation:

We are to find out the Standard from of an ellipse

#"with vertices at "(1, -1) and (7, -1)#

#"and foci at "(4+sqrt5, -1) and (4-sqrt5, -1)#

#"Center"->(4,-1)" and semi major axis"(a)=(7-1)/2=3#

Now if e be eccentricity and b be the semi minor axis of the ellipse then #e^2=(a^2-b^2)/a^2=>a^2e^2=a^2-b^2#

#"The distance of focus from center"=ae=4+sqrt5-4=sqrt5#

#=>a^2e^2=5=>a^2-b^2=5#

#=>3^2-b^2=5#

#=>b^2=9-5=4=>b=2#

So the equation of the ellipse having center#(4,-1)# and semi major axis #a=3# and semi minor axis (b=2)

#color(red)((x-4)^2/3^2+(y+1)^2/2^2=1)#