Question #adcfb

3 Answers
Sep 13, 2016

# = 1/(2 sqrt 3)#

Explanation:

#lim_(x->0) (sqrt(3+x)-sqrt3)/x#

#= lim_(x->0) (sqrt(3)(1+x/3)^(1/2)-sqrt3)/x#

By Binomial Expansion, with #0 < abs x " << " 1#

#= lim_(x->0) (sqrt(3)(1+x/6 + O(x^2))-sqrt3)/x#

#= lim_(x->0) sqrt(3)/6 + O(x)#

#= sqrt(3/36) = 1/(2 sqrt 3)#

Oct 21, 2016

(Alternate approach, using L'Hospital's Rule).
#sqrt3/6#

Explanation:

L'Hospital's Rule: if we have an indeterminate form #0/0#, we need differentiate the numerator and the denominator and then take the limit.
Given is the problem
#lim_(x->0) (sqrt(3+x)-sqrt3)/x#
We observe that when we take the limit and insert #x=0#, the expression becomes #0/0#. Applying the above stated rule we get
#lim_(x->0) (d/dx(sqrt(3+x)-sqrt3))/(d/dxx)#, rewriting numerator in the exponent form
#lim_(x->0) (d/dx((3+x)^(1/2)-sqrt3))/(d/dxx)#
#lim_(x->0) (1/2(3+x)^(-1/2)xx1)/1#
Now taking the limits
#1/2(3+0)^(-1/2)#
#=>1/(2sqrt3)#
Rationalizing the denominator we get
#sqrt3/6#

Oct 21, 2016

"Rationalize" the numerator.

Explanation:

#((sqrt(3+x)-sqrt3))/x * ((sqrt(3+x)+sqrt3))/((sqrt(3+x)+sqrt3)) = ((3+x)-3)/(x(sqrt(3+x)+sqrt3))#

# = x/(x(sqrt(3+x)+sqrt3)) = 1/(sqrt(3+x)+sqrt3)#

#lim_(xrarr0)1/(sqrt(3+x)+sqrt3) = 1/(sqrt(3+0)+sqrt3) = 1/(2sqrt3)#