Given #f(x)=sec^2x=2/(2cos^2x)#
#=>f(x)=2/(1+cos2x)#
#f'(x)=stackrel(Lt)(""_(hto0)) (f(x+h)-f(x))/h#
#=2stackrel(Lt)(""_(hto0))1/h(1/(1+cos(2(x+h)))-1/(1+cos(2x)))#
#=2stackrel(Lt)(""_(hto0)) 1/h(cos(2x)-cos(2(x+h)))/((1+cos(2(x+h)))(1+cos(2x))))#
#=2 stackrel(Lt)(""_(hto0)) 1/h(cos(2x)-cos(2(x+h)))/((1+cos(2(x+h)))(1+cos(2x))))#
#=2stackrel(Lt)(""_(hto0))1/h(2sin(2x+h)sinh)/((1+cos(2(x+h)))(1+cos(2x))))#
#=(4sin(2x))/((1+cos(2x))(1+cos(2x)))#
#=(8sinxcosx)/(2cos^2x.2cos^2x)#
#=2sec^2xtanx#