Question #02ef3

2 Answers
Dec 1, 2016

I found:
#r=4.2#in.
#d=8.4#in

Explanation:

Remember that the area is: #pir^2# so using your given value you get:
#18pi=pir^2#
rearranging:
#r^2=18pi/pi=18#
#r=sqrt(18)=4.2#in.
The diameter is twice this value; or:

#d=2r=2xx4.2=8.4#in

Dec 1, 2016

#"Radius"=3sqrt2#

#"Diameter"=6sqrt2#

Explanation:

We know that the area of the circle is #18pi#. We need to find the radius and the diameter.

For that, we use the formula

#color(BLUE)("Area of circle"=pir^2#

Where #r# is the radius of the circle

So,

#rarrpir^2=18pi#

Divide both sides by #pi#

#rarr(cancelpir^2)/cancelpi=(18cancelpi)/cancelpi#

#rarrr^2=18#

Take the square root of both sides

#rarrsqrtr^2=sqrt18#

#rarrr=sqrt(9^2)#

#color(purple)(rArrr=3sqrt2~~4.24#

Now, we need to find the diameter

As the diameter is twice the radius,

#color(darkviolet)(rArr"diameter"=2*3sqrt2=6sqrt2~~8.48#