The integral #int_0^a (sin^2x)/x^(5/2)dx# converges or diverges ?

1 Answer
Jan 10, 2017

See below.

Explanation:

#d/(dx)(sqrt[x] sin^2x/x^2)=(2 cosx sinx)/x^(3/2) - (3 sin^2x)/(2 x^(5/2))#

so

#int_0^a (sin^2x)/x^(5/2)dx =2/3(int_0^a(2 cosx sinx)/x^(3/2)dx-(sqrt[x] sin^2x/x^2)_0^a)#

but

#d/(dx)(sqrt x cosx sinx/x) =cos^2x/sqrt[x] - (cosx sinx)/(2 x^(3/2)) - sin^2x/sqrt[x] #

so

#int_0^a (cosx sinx)/(2 x^(3/2)) dx = int_0^acos^2x/sqrt[x]dx-int_0^asin^2x/sqrt[x] dx-(sqrt x cosx sinx/x)_0^a #

so the problem is with the integrals

#int_0^a cos^2x/sqrt[x]dx #

and

#int_0^a sin^2x/sqrt[x]#

but

#int_0^a abs(cos^2x/sqrt[x])dx le int_0^aabs(dx/sqrt(x))=2sqrt(a)# and

#int_0^a abs(sin^2x/sqrt[x])dx le int_0^aabs(dx/sqrt(x))=2sqrt(a)#

so the integral is convergent.

Note: It is assumed that #lim_(x->0)sinx/x=1#