Question #946b3

2 Answers
Jan 28, 2017

#int (x^{1/2} + 3x + 5) dx = 2/3 x^{3/2} + 3/2 x^2 + 5x + "constant"#

Explanation:

Use the power rule.

For #n != -1#,

#int x^n dx = x^{n+1}/{n+1} + "constant"#.

Therefore,

#int (x^{1/2} + 3x + 5) dx = int x^{1/2} dx + 3int x dx + 5int x^0 dx#

#= 2/3 x^{3/2} + 3/2 x^2 + 5x + "constant"#

Jan 28, 2017

#2/3x^(3/2)+3/2x^2+5x+c#

Explanation:

This is a Calculus question.

Integrate each term using the #color(blue)"power rule for integration"#

#color(red)(bar(ul(|color(white)(2/2)color(black)(intax^ndx=a/(n+1)x^(n+1) ; n≠-1)color(white)(2/2)|)))#

#color(blue)"Note that " 5=5x^0" since " x^0=1#

#rArrint(x^(1/2)+3x+5)dx#

#=1/(3/2)x^((1/2+1))+3/2x^((1+1))+5x^((0+1))+c#

#=2/3x^(3/2)+3/2x^2+5x+c#

where c is the constant of integration.