Question #6455f

1 Answer
Mar 8, 2017

#l=(n sqrt[36 + h (h + 12 pi+ h pi^2)])/h#

Explanation:

The string center describes a helix around the cylinder with parametric equation given by

#p(t) = ((r+h/2)cost,(r+h/2)sint, alpha t)#

the helix pitch is calculated with the condition

#p(t+2pi)-p(t)=(0,0,h)#

so we have #alpha (2pi) = h -> alpha = h/(2pi)#

The string is wounded around the cylinder from #t=0# to #t = t_f# and we know that

#t_f h/(2pi) = n -> t_f = (2pi n)/h#

the string length is given by

#l = int_(t=0)^(t=t_f) (ds)/(dt) dt#

Here #d/(dt) p(t) = (-(h/2 + r) sint, (h/2 + r) cost, h/(2pi)) = ((dx)/(dt),(dy)/(dt), (dz)/(dt))#

and #(ds)/(dt) = sqrt(((dx)/(dt))^2+((dy)/(dt))^2+((dz)/(dt))^2)#

giving

#(ds)/(dt) = sqrt((h^2 (1 + pi^2))/(4 pi^2) + h r + r^2)#

so finally

#l = (npi)/h sqrt((h^2 (1 + pi^2))/(4 pi^2) + h r + r^2)#

substituting #r=3/pi# the result is

#l=(n sqrt[36 + h (h + 12 pi+ h pi^2)])/h#