#x(sqrt(x^2+1)-sqrt(x^2-1))=(2x)/(sqrt(x^2+1)+sqrt(x^2-1))# and
#(2x)/(sqrt(x^2+1)+sqrt(x^2-1))=(2x)/(x(sqrt(1+1/x^2)+sqrt(1-1/x^2)))=#
#2/(sqrt(1+1/x^2)+sqrt(1-1/x^2))# so
#lim_(x->oo)x(sqrt(x^2+1)-sqrt(x^2-1))=lim_(x->oo)2/(sqrt(1+1/x^2)+sqrt(1-1/x^2))=2/2=1#