What is #lim_(x->oo) (x^3/(x-1)-x^2)# ?
2 Answers
See below
Explanation:
Using Binomial Series
#lim_(x->oo) (x^3/(x-1)-x^2) = oo#
Explanation:
When assessing:
#lim_(x->oo) (x^3/(x-1)-x^2)#
you cannot simply substitute
#oo - oo#
Instead, we can simplify the expression first, like this:
#lim_(x->oo) (x^3/(x-1)-x^2) = lim_(x->oo) ((x^3-x^2+x^2-x+x-1+1)/(x-1)-x^2)#
#color(white)(lim_(x->oo) (x^3/(x-1)-x^2)) = lim_(x->oo) (((x^2+x+1)(x-1)+1)/(x-1)-x^2)#
#color(white)(lim_(x->oo) (x^3/(x-1)-x^2)) = lim_(x->oo) ((color(red)(cancel(color(black)(x^2)))+x+1)+1/(x-1)-color(red)(cancel(color(black)(x^2))))#
#color(white)(lim_(x->oo) (x^3/(x-1)-x^2)) = lim_(x->oo) (x+1+1/(x-1))#
#color(white)(lim_(x->oo) (x^3/(x-1)-x^2)) >= lim_(x->oo) x = oo#