Question #a4762
1 Answer
Mar 12, 2017
Explanation:
Using the
#color(blue)"trigonometric identities"#
#color(red)(bar(ul(|color(white)(2/2)color(black)(tanx=(sinx)/(cosx))color(white)(2/2)|)))# differentiate using the
#color(blue)"quotient rule"#
#color(red)(bar(ul(|color(white)(2/2)color(black)(f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2)color(white)(2/2)|)))#
#"here "g(x)=sinxrArrg'(x)=cosx#
#"and "h(x)=cosxrArrh'(x)=-sinx#
#rArrf'(x)=(cosx(cosx)-sinx(-sinx))/(cos^2x)#
#color(white)(rArrf'(x))=(cos^2x+sin^2x)/(cos^2x)#
#• cos^2x+sin^2x=1" and " 1/(cos^2x)=sec^2x#
#rArrd/dx(tanx)=1/(cos^2x)=sec^2x# This result is a
#color(blue)"standard derivative"# and worth remembering.
#color(blue)"Note:"# This is a Calculus question not Algebra