Question #a4762

1 Answer
Mar 12, 2017

#d/dx(tanx)=sec^2x#

Explanation:

Using the #color(blue)"trigonometric identities"#

#color(red)(bar(ul(|color(white)(2/2)color(black)(tanx=(sinx)/(cosx))color(white)(2/2)|)))#

differentiate using the #color(blue)"quotient rule"#

#"Given " f(x)=(g(x))/(h(x))" then"#

#color(red)(bar(ul(|color(white)(2/2)color(black)(f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2)color(white)(2/2)|)))#

#"here "g(x)=sinxrArrg'(x)=cosx#

#"and "h(x)=cosxrArrh'(x)=-sinx#

#rArrf'(x)=(cosx(cosx)-sinx(-sinx))/(cos^2x)#

#color(white)(rArrf'(x))=(cos^2x+sin^2x)/(cos^2x)#

#• cos^2x+sin^2x=1" and " 1/(cos^2x)=sec^2x#

#rArrd/dx(tanx)=1/(cos^2x)=sec^2x#

This result is a #color(blue)"standard derivative"# and worth remembering.

#color(blue)"Note:"# This is a Calculus question not Algebra