Question #976bb Precalculus Polar Coordinates Converting Coordinates from Rectangular to Polar 1 Answer Ratnaker Mehta Mar 14, 2017 # (i) : 4cis120^@=-2+i2sqrt3; (ii) : 9cis(3pi/2)=-9i.# Explanation: Recall that, #rcis theta=r(cos theta +i sin theta).# # (i) 4cis 120^@=4(cos 120^@ + i sin 120^@)# #=4{cos (90^@+30^@)+isin(90^@+30^@)}# #=4{-sin30^@+icos30^@}# #=4{-1/2+isqrt3/2}# #:. 4cis 120^@=-2+i2sqrt3.# Similarly, #(ii) : 9cis(3pi/2)=-9i.# Enjoy Maths.! Answer link Related questions What are the polar coordinates of #(0, -2)#? What are the polar coordinates of #(-4, 0)#? What are the polar coordinates of #(3, 4)#? What are the polar coordinates of #(-2,0)#? How do I convert Cartesian coordinates to polar coordinates? How do I find the polar form of #a+bi#? How do I find the polar form of #3sqrt2 - 3sqrt2i#? How do you change (4, -1) from rectangular to cylindrical coordinates between [0, 2π)? How do you change (0,3,-3) from rectangular to spherical coordinates? How do you find the rectangular coordinates if you given the cylindrical coordinate #(5, pi/6, 5)#? See all questions in Converting Coordinates from Rectangular to Polar Impact of this question 1604 views around the world You can reuse this answer Creative Commons License