Question #0da0d

1 Answer
Mar 19, 2017

# xln(x^2+1)-2x+2arc tanx+C.#

Explanation:

Let #I=intln(x^2+1)dx=int{(ln(x^2+1)(1)}dx.#

We use the following Rule of Integration by Parts (IBP) :

#(IBP) : intuvdx=uintvdx-int{((du)/dx)(intvdx)}dx.#

We take # : u=ln(x^2+1) :. (du)/dx=1/(x^2+1)d/dx(x^2+1), i.e.,#

# (du)/dx=(2x)/(x^2+1)." Also, "v=1 rArr intvdx=x.#

Hence, #I=xln(x^2+1)-int{((2x)/(x^2+1))(x)}dx.#

#=xln(x^2+1)-2intx^2/(x^2+1)dx#

#=xln(x^2+1)-2int{(x^2+1)-1}/(x^2+1)dx.#

#=xln(x^2+1)-2int{(x^2+1)/(x^2+1)-1/(x^2+1)}dx.#

#=xln(x^2+1)-2int1dx+2int1/(x^2+1)dx.#

#:. I=xln(x^2+1)-2x+2arc tanx+C.#

Enjoy Maths.!