Question #a3df0 Calculus Tests of Convergence / Divergence Partial Sums of Infinite Series 1 Answer Cesareo R. Mar 21, 2017 Undetermined. Explanation: sum_(k=1)^n(sin(6k)-sin(6(k+1)) = sin(6)-sin(6(n+1)) so lim_(n->oo)sum_(k=1)^n(sin(6k)-sin(6(k+1)) = sin(6)-lim_(n->oo)sin(6(n+1)) which is undetermined. Answer link Related questions How do you find the n-th partial sum of an infinite series? How do you find the n-th partial sum of a geometric series? How do you find the 5-th partial sum of the infinite series sum_(n=1)^oo1/(n(n+2) ? How do you find the 10-th partial sum of the infinite series sum_(n=1)^oo(0.6)^(n-1) ? How do you find the 6-th partial sum of the infinite series sum_(n=1)^oo1/n ? How do you find the 4-th partial sum of the infinite series sum_(n=1)^oo(1/sqrt(n)-1/sqrt(n+1)) ? How do you find the 4-th partial sum of the infinite series sum_(n=1)^oo(3/2)^n ? How do you find the 5-th partial sum of the infinite series sum_(n=1)^ooln((n+1)/n) ? How do you find the sum of the series 1+ln2+(((ln2)^2)/(2!))+...+(((ln2)^2)/(n!))+...? How do you find partial sums of infinite series? See all questions in Partial Sums of Infinite Series Impact of this question 1590 views around the world You can reuse this answer Creative Commons License