Question #ad5d2

1 Answer
Apr 3, 2017

#1/2lnabs((x-3)/(2+sqrt(6x-x^2-5)))+C#

Explanation:

#I=intdx/((x-3)sqrt(6x-x^2-5))#

Complete the square in the square root:

#I=intdx/((x-3)sqrt(-(x^2-6x+9)-5+9))#

#I=intdx/((x-3)sqrt(4-(x-3)^2))#

Let #x-3=t#. This implies that #dx=dt#:

#I=intdt/(tsqrt(4-t^2))#

Now let #t=2sintheta#. This implies that #dt=2costhetad theta#.

#I=int(2costhetad theta)/(2sinthetasqrt(4-4sin^2theta))#

Note that #sqrt(4-4sin^2theta)=2sqrt(1-sin^2theta)=2costheta#:

#I=int(2costhetad theta)/(2sintheta(2costheta))#

#I=1/2intcscthetad theta#

This is a well known integral:

#I=-1/2lnabs(csctheta+cottheta)#

#I=-1/2lnabs((1+costheta)/sintheta)#

#I=1/2lnabs(sintheta/(1+sqrt(1-sin^2theta)))#

Our substitution #t=2sintheta# implies that #sintheta=t//2#:

#I=1/2lnabs((t//2)/(1+sqrt(1-(t//2)^2)))#

Note that #sqrt(1-(t//2)^2)=sqrt((4-t^2)/4)=1/2sqrt(4-t^2)#:

#I=1/2lnabs((t//2)/(1+1/2sqrt(4-t^2)))#

#I=1/2lnabs(t/(2+sqrt(4-t^2)))#

Using #t=x-3#:

#I=1/2lnabs((x-3)/(2+sqrt(6x-x^2-5)))+C#