How do you express #sin(sin^(-1)(x)+cos^(-1)(y))# without trigonometric functions?
1 Answer
Explanation:
Let
Then:
#-pi/2 <= alpha <= pi/2" "# so#" "cos alpha >= 0#
#0 <= beta <= pi" "# so#" "sin beta >= 0#
By Pythagoras:
#cos^2 theta + sin^2 theta = 1#
Hence we have:
#sin(alpha) = sin(sin^(-1)(x)) = x#
#cos(alpha) = sqrt(1-sin^2(alpha)) = sqrt(1-x^2)#
#cos(beta) = cos(cos^(-1)(y)) = y#
#sin(beta) = sqrt(1-cos^2(beta)) = sqrt(1-y^2)#
Noting that we can use the non-negative square root in both these cases from our prior observation that
Then using the sum formula for
#sin(sin^(-1)(x)+cos^(-1)(y)) = sin(alpha+beta)#
#color(white)(sin(sin^(-1)(x)+cos^(-1)(y))) = sin(alpha)cos(beta)+sin(beta)cos(alpha)#
#color(white)(sin(sin^(-1)(x)+cos^(-1)(y))) = xy+sqrt(1-y^2)sqrt(1-x^2)#