How do you express #sin(sin^(-1)(x)+cos^(-1)(y))# without trigonometric functions?

1 Answer
Mar 26, 2017

#sin(sin^(-1)(x)+cos^(-1)(y)) = xy+sqrt(1-y^2)sqrt(1-x^2)#

Explanation:

Let #alpha = sin^(-1)(x)# and #beta = cos^(-1)(y)#

Then:

#-pi/2 <= alpha <= pi/2" "# so #" "cos alpha >= 0#

#0 <= beta <= pi" "# so #" "sin beta >= 0#

By Pythagoras:

#cos^2 theta + sin^2 theta = 1#

Hence we have:

#sin(alpha) = sin(sin^(-1)(x)) = x#

#cos(alpha) = sqrt(1-sin^2(alpha)) = sqrt(1-x^2)#

#cos(beta) = cos(cos^(-1)(y)) = y#

#sin(beta) = sqrt(1-cos^2(beta)) = sqrt(1-y^2)#

Noting that we can use the non-negative square root in both these cases from our prior observation that #cos alpha >= 0# and #sin beta >= 0#.

Then using the sum formula for #sin# we find:

#sin(sin^(-1)(x)+cos^(-1)(y)) = sin(alpha+beta)#

#color(white)(sin(sin^(-1)(x)+cos^(-1)(y))) = sin(alpha)cos(beta)+sin(beta)cos(alpha)#

#color(white)(sin(sin^(-1)(x)+cos^(-1)(y))) = xy+sqrt(1-y^2)sqrt(1-x^2)#